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1. Introduction. TIndividual and collective preferences are often
modelled using binary relations. Weak orders turn out to be cspecially

useful for this purpose., A survey of this gencral area is provided
e T »

L~
by [3]. ! The references ([2], [9], [10], [12] and [13}) also are of

interest. " The idea is to let X denote a set of alternatives and

then rank X by preference. Thus  xPy means v is preferable to o x.

?
The resulting hinary relation P is often a weak ovder on X, in
) \
that P s
(1) reflexive (xPx  for all x ¢ X)
(2) transitive (xPy and yPz > xPz)
(3) total (for x,y ¢ X, xPy or yPx).

~—-- Such relations also arise naturally in digital image processing.
Tn its most general form, a (monochromatic) digital picture is simply
a rectangular arrav of numbers that have spatial as well as numerical

significance. Multilevel threshholding of a picture involves choosing
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does not exceed h 2 if their value exceeds

. This process simply constructs a weak order

Finally, weak orders arise in connection with the reconstruction

olutionary trees.

g

, and if the goal

The underlying set here is a set of

is to construct a binaryv tree on

the

SOMmer

sense estimiates the true evolutionary history of
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existing members of X, then one can view Lhis as constructing a ,
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nested sequence of weak orders on these members.b%or more qUtui]S, the
is referred to [5], [6], [7], [8] and [11].

Using the above examples for motivation, we now embark on a dis-
cussion of the order theoretic propertics of the partiallv ordered
set of weak orders on a set. In i3, this work will be revlated to
carlier work in pure lattice theoryv, and in @4 the weak oracrs on oo

finite set will be characterized in an order theorcetic and combina-

torial setting.

£2. Weak Orders. Let X be a nonempty set, and W(X) the set of
weiak orders on X, with W(X) partially ordered bv implication. Thus

i Q0 in W(X) if

xPy implies xQv

for all x,y + X. The atoms of W(X) are then the lincar orders of
X, the largest element of W(X) is the relation X ¥ X, and the
coatoms are the weak orders that partition X into two classes. VPor
J o proper subscet of X, it will be convenient to let CG)  be
the coatom defined by (x,v) « C(I) if dx,vb o J, fx,v: < X0J, or
x o Nuoowith v o .

A weak order Poon X mav also be thought of as an ordered par-
tition of X. This is a pair (P';<) where P oois a partition of X,
md "™ a Tinear ordering of the clusscv of  P. When P has onlv

a finite number of distinct classes, it wi!' often he convenient to
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specify their ordering by simply listing them in ascending order. For

example, one could write

@) = (XA ).

There is yvet a third way of viewing weak orders. If A, P e W(X)
with A an atom under P, then P mav be viewed as a comgruence
relation on the chain (X,A). The principal filter in W(X) gencerated
by A is then isomorphic to the lattice of congruence relations on
(X,A).

We turn now to some elementary order theorctic properties of  W(X).
We begin with the assumption that X is infinite and will later sce
what clse can be said in the finite case. Accordingly, until further
notice, it will be assumed that X denotes some fixed infinite set.
Rather than stating the results formally as theorems, thev will instead

be listed as properties of W(X).

(P1) Fvery principal tilter of W(X) 1is a complete, compactly

wenerated distributive lattice.

Proof: This follows from the fact that if A is an atom of W(X),
then the principal filter generated by A in W(X) is isomerphic to
the lattice of conpruence relations ot the chain  (X,A).

(P2) W(X) 1is a join semilattice.

P'roof: This follows trivially from (P1).

1y
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(P3)  W(X)  is atomistic and dually atomistic,

Proof: Let P - 0 in W(X). There must then exist clements  x,v

such that  xOQy  but not xPy. Define a mapping ta > X bv lettin
w(x) =y, nly) = x and 1n(z) = z for z # x,v. 1f A is any at
under P, we take A1 to be the atom specified by sA]t if -~ (s)

Then A1 < Q but Al ¢ P and this shows W(X) to be atomistic.

Dual atomicity follows from the fact that the lattice of congruence

relations of a chain is dually atomistic.

(P4) Let ., K be proper subsets of X. C(J) » C(K) exists
W(x) if and only if J ¢« K or K < J.
Proof: If J < K, it is easy to show that

C) A CK) = (XAK) (K\J) ().

1f J, K are not comparable, one can choose x  J\K and v « KuJ.

If A were an atom under both C(J) and C(K), this would force

hoth

Ay and  yAx,

a contradiction,
(P5) Let (€, bea family of coatoms of W), Lf
fails to exist, then there exist indices 1i.j . J such that l'i A

rails to exist.
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Proof: We shall establish the contrapositive of  (P5). Suppose that

C. A~ C, exists for all indices 1i,j. Let P = - _C

. ., where o denotes
1 ] ii

set intersection. Then P is a reflexive transitive relation on X.
We would be done if we could show P to be total. Tf xPv Tfails,
then xCiy must fail for some 1 « J, so yCix. Consider anv other
C (ke J). 1f Ci = C(Ji) and Ck = C(Jk), we know that Ji‘ ]

are comparable.  Now  (x,v) Ci forces v o« X\Ji with x ¢ J.. 11t

. o » ] S RS PN | » roeo N
li ]k’ then  x ]k forces y(k\ 1t I i then v

N

again torces y(kx. Consequent ly,  vPx.

The above result should be compared with [7], Thceorem 2.4, p. 146,

It might also be mentioned that (P5) applies to arbitrary families of
weak orders not just to coatoms. This is an immediate consequence of
W(X) being dually atomistic. Before proceeding we shall need some
notation. As we have been doing, sct union and intersection will be
denoted by v and n, with V,A reserved for the join and mect
operations in W(X). Following the terminologv introduced bv Mon-

jardet ([13], p.5%4) we agree for a binarv relation 0 on X to let
0° = () Gy 4 0

denote the complement of Q. and

d
0 = T(x,y):(v,x) ¢ QF
. . . a .
the dual of Q. Notice that when O is a weak order, O is the

strong preterence relation associated with 0 in that

(x,v) Qd S (Xyv) oD and (v,x) ¢ O

5
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(P6) For P,Q in W(X) there is a smallest weak order R oover
P such that RAOQ exists. This weak order R will be denoted
R = PtQ,.
- <4
4
Proof: Our goal will be to prove that R is the transitive closure
¢ d X . .
of P u (P n Q). The key tact here is the obscervation that
(1) PAQ exists in W(X) if and only if Pd c Q and Qd <P T
otk 2 1l and only 1l bt P :
Proof of (1): If A is a lower bound for P,Q0 in W(X), then
i . :
(x,v) - PY implies (v,x) - PC,  so (y,x) ~ AY. 1t follows that
- -«
d .
(x,v) - A, whence (x,v) - Q. By symmetrv, @ ¢ P. Suppose con-
| d
verselv that P Q and Q < P. lLet R =P a 0. We need onlv show
that R . W(X), and to do this, we need only argue that it is total.
It (x,v) - R, ‘then (v.x) « R = 00 yd = pd L od <P .0 =R, 1
as desired. To establish the theorem we note first that necessarilv, ;
2) (}d « Pou (]’(‘ i (]d). - i
- 4
Proof of (2): This follows trivially from the fact that
1 . 1
0% = (Qd NPy o (()d n Py,
-
Note next that
N d
(1) (v u (o od)] 0.
-4
‘ I .
f'kuf: “_f“(}): Using the fact that ({13, p. H4)y R » R i oan in- ]
volution on the lattice of binarvy relations on X, this follows
]
trivialtly from

Aw o« a.a _d
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Pu " nH1d=pta @dy, qddy
= (Pd N PUd) t (pd ao0)
d
=4 u (P aQ) R

It can now be shown that

(4) For R >P, R AQ exists in W(X) if and enlv if R contains

. > d
the transitive closure of P u (P° a Q).

d d

} then by (2), © - R.
d

Proof of (4): If R contains P u ¢ no
Also, if  (x,y) - Rd, then (v,x) ¢ R, so (v,x) ¢ P u (P' 0")
and by (3)  (x,v) « Q. Thus R(l « 0 and (1) may not be applied to
se¢ that R A Q exists.

. . 1
Suppose conversely that R A Q  exists. By (1), R, whence

N e

pu e wqdy ¢ R,

The assertion of (P6) now follows from the fact that R contains
¢ d - AP . . -
P (P 0 Q) if and onlv if it contains its transitive closure, and

o . ¢ d .
the transitive closure of P u (P 1w Q) 1is a weak order on X,

Remark: If P, O are voting preferences then one can think of Pt 0
as heing the preterence obtained by 0 casting doubt on Py i,ce.,
whenever there is a conflict between P and O, the issuc is settled
by leaving that particular preference unresolved, The preference
(P+0) A0 mav be thought of as the moditication of O by wmeans of

I wherever possible, and using the preleience of 0 wherever there

is a conflict. Similar interpretations occur when dealing with digital

pictures or cvoelutionary trees.
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(P7) 1If the partition associated with P has only [initely many

distinct classes Cl,Cq,...,Ck, then the intervql under P in W(X) .if
isomorphic to W(C]) X W(C,) »... x W(Ck).

Proof of 7: The desired isomorphism is casily shown to be
Q> \Q]’QZ""’Qk)

where Qi = the restriction of Q to Ci.

At this point we impose the restriction that X be finite, and with
no loss in generality, take X = {1,2,...,n}, where n > 1 1is a positive
integer. In view of this, we shall write W(n) in place of W(X). We

then have:

(F1) The interval above any atom of W(n) is isomorphic to the

lattice of all subsets of an n - 1 element set.
4
-4
Proof of (IF1).  This follows from the proot of (P1).
(F2) Say that a coatom is of type i if its larpgest class has i
-
members.  This produces n - 1 distinct types of coatoms having the
following properties:
(a) A coatom ¢ is of type 1 iff CAB exists for exactly i 4
type 1 coatoms B,
(b)  bvery atowm is the meet of exactly o - 1 coatoms - one ol cach
1
type.
—
i
* po—— P . A W e . Py pa—y e anbe. s
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Proof of ¢°2). These asserticns follow from (P4).

(F3) There are

n , .
,] coatoms of type 1 and each such coatom dominates
i D LAk AL it

exactly i!(n - i)! atoms. 1In fact, the principal ideal gencrated bv a

type i coatom is order isomorphic to W(i) > W(n -~ i).

Proof of §3). See property (P7).

(1r4) For n 3, the group of o_l}l_u_rj automorphisms of W(n) s
isomorphic to 2 x 8 , where 2 1is a group of order 2, and 5 = is
the group of permutations of {1,2,...,n}.

Proof of (K4). For each 7 . Sn, the correspondence C(J) ~ C(~(J))
clearly extends to an order automorphism of W(n), and these order auto-
morphisms are distinct. The correspondence (B,S) > (B, ) is an order
automorphism ol order 2 that commutes with the order automorphisms in-
duced by the elements of Sn. The subgroup of the group G of all order

automorphisms of W(n) generated by these mappings is thus clearly

isomorphic to 2 xS . We would be done if we could just show that G

n
has order . 2 » n!. By F3, an order automorphism of W(n) must map
a type 1 coatom into either a type L or a type n - 1 coatom. Suppose
that  C(i) gets mapped to a type n - 1 coatom by the order automorphism

f. Choose j,k # i, and note that none of [C(i) A fC(j), rC(i) ~ 1C(k),
or fC(j) A fC(k) can exist. Since fC(i) is type n - 1, it follows

that at least one of fC(j) or fC(k) must also be type n - 1. It

E
=
- 4

{

1
- -4




-10-

then follows that the remaining one must be type n - 1. Here we have
used the Tact that a tvpe n - | coatom has o meet with exact!y 1 otvpe |
coatom. Thus if { sends one type 1 coatom to . tvpe n - 1 coatom,

then it must send all type 1 coatoms to type n - 1 coatoms. By P3,

an order automorphism is completely determined by its effect on the coatoms
of W(n). There are only 2 x n! ways that the type 1 coatoms can be
mapped onto either themselves or the type n - 1 coatoms, and we are

done. It should be noted that the result does indeed fail for O0OP(2);

for OP(2) is a 3 clement semilattice with 2 atoms and a unit element,

so its group of automorphisms is simply 2.

73. Relation to Residuated Mappings. Before doing anything along these

4,

lines, some background material is needed. A mapping ¢ from a partially
| ordered set P to a partially ordered set Q 1is said to be residuated
in case the preimage of a principal ideal of Q 1is necessarily a principal

ii ideal of P; dually, ¢ 1is said to be residual il the preimape of a

principal filter of Q is a principal filter of P.  An alternate but il-

luminating definition for residuated mappings would state that !:pP » O

L
F is residuated if -
—— y

n ¢ is isotone in that a b in P implies j(a) - 4(b) in 0,

3

‘l and there is an isotone mapping ¢+:Q » P such that - 4

:

g + +

! (2) T D) and q - ¢! (q) for all p. P, q- Q.

[

4
. : + , -
fhe mapping is then residual and is completely determined bv . To .

9y . ‘ < : .
sy that v ds range-vesiduated will be to sav that the preimaee of

P o Uy AP IPET SR U W P,




I every principal ideal of Q is cither emptv or a principal ideal of
P. This is evidentlv equivalent to the assertion that & is residuated

it it is considered to be a mapping trom P ointo the order fiflter of

' 0 penerated bv its image. To sav that ¢:P > 0 is range-closed is
' to sav that its image is convex in that ¢() - « s(b) implies the
existence of an element p  of PP osuch that q = H(p). A residuated
. mapping $:P > Q is said to be duallyv range-closed if the image in P

of its associated residual mapping is convex. Finallv, we auree to
call ¢ multiplicative in case the existence of a Ab in P implies
that  A{a A b)Y is the infimum in O of {d(),5(b)Y;  in other words,
a multiplicative mapping preserves finite existing infima.  For an
introduction to the theory of residuated mappings, the reader might
consult J4]. 1t will be convenient to let M(P)  denote the semigroup
of all range-residuated multiplicatvive mappings on the partially
ordered set P, and call P an M-semilattice in case for each p - P

there correspond idempotents :Dp,l,"P in M(P) such that

(1)y % is range-closed with image the principal ideal generaced

. .+ L
(2) i is duallv range-closed with the image ot K the principal

’

rilter generated by p.

Dur goal will be to characterize M-semilattices. Tt will trn out
te he convenient to first investigate the "arrow' operation on a join

semilattice,

.

L




~12=

Theorem 1. Let P be a join semilattice with no smallest element.

L NMEERODE iy

Suppose that every filter of P is a distributive lattice, and that
for every a,b in P, a tb is the smallest element above a that

i has a meet with b. Then:

; () a<a* b.
(2) a=atb iff aAb exists.
(3) a<~b implies a t ¢ <b ! c.

(4) b ¢ implies a t b - at c.

(5) If a Ab exists, then (a Ab) t ¢ = (at ) A (b’

I
—_—

6y (a vb) toe ¢) v (bt o).

b) v (a t ¢).

i
~
)

(7)) (a*t b)Yy 1 ¢

(a* b)) v (a'oc).

il

(8) 1If b A c¢ exists, then a * (b A ¢)

Proof: The first 4 items are trivial.

(5) If x>aarb and x A ¢ exists, then x Vv a > a? ¢ and
xvh b te, Since x = (xVva)a{xVvh), this shows that
vt )y A (h 2 ). I particular, this is troe lor  x (ST 1D B

the reverse incquality lTollows from (3).

(6) 1Is clear. . k

(7) 1t x> (a*th) tce, thenm x> a* b and x A ¢ exists,

so trom x > a, we have also that x > a ' ¢. Hence x - (a * b) v (a ' o).
I x - (atb)yvi(tce), then x ~atb and x A ¢ exists, so _—
)
(a * b)) ¢+ c. )
(8) If x - a and x A b A ¢ exiasts, then x A b and x A ¢ must
exist, so x> (a t b)Y v (at ). If x> (a b)) v (at ), then x> a - 4

and  x A b, x A ¢ exist. Since also b A ¢ exists, we have that

~hoA ¢ exists and ox o a bt (boAe).
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We turn now to the characterizat’ a of M-semilattices.

Theorem 2. Necessary and sufficient conditions Tor a partially

ordered set P to be an M-semilattice arve:

(i) Every principal filter of P be an im “fcative lattice,

(ii) P be a join semilattice.
(iii) Given a,b . P, there is an element a * b such that

a<atb and x A~ b exists for x - a iff x > a * b,

Proof: Necessity. bvidently P omust have a larpest element T, bv

{41, Theorem 13.1, p. 119, P is a join scmilattice. Now let a,p ¢ P
with & ¢ M(P) a range-closed idempotent whose image is (p], the princi-
pal ideal gencrated by p. If a,p have a lower bound x, then x = *(x),

and bv {4], Theorem 13.1, p.119, aarp exists and equals .‘.‘+(D)» In fact

(1) d(a) = d(a) A d(p) = da A p) = a A p.

. . +
In particular, since Joh(a)  and  p have () as a Tower bound, we

have

(2) 0a) = da o) = 5Tp(a) A p.

Now if x » a and x A p exists, then by (1),
$(x) = xap > $(a).

Henee

1) x > @) v oa.

Loaa - .4

A 4 . 48
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Lf, on the contrarv, (3) holds, then clearly x A p exists. Thus

we may take
(4) atp TR voa.

The fact that every principal filter of P is an implicative lattice
now follows from the observation that i1 a,p have a lower bound in
P then ¢{a) = a » p. Thus o > a A p is residuated in anv principal
filter F of P, and this is preciselv the assertion that F  be
an implicative lattice.

For the converse assume (1), (ii) and (iii). Let p e P The mapping
(%) = x vV p will serve as a dually range-closed idempotent member
of M(P) with W+:[p,]] > P given by v+(y) =y for v > p. The
mapping ) is multiplicative because every principal filter of P
is a distributive lattice. To de¢fine the desired range-closed idem-

potent ¢ in M(P), take

) d(a) = (a t p) A p.
For b« P, if the preimage of (b)) under ¢ is not emptv, then
p(x) 7 b,p implies the existence of b A p. Working in the implica-

tive lattice [b A p,1], let b* be defined by the rule t Ap < b
iff t <b. Them for a .« P, &) = (at p)Ap < b implics
[(a*p)vbl Aap<b, so a< (atp)vbc< h*. If converscly a < b,

*
then a v (b A p) < b shows Ja v (b Ap)] Ap < b. Since a

av (b Ap)~ h“, it follows that $(ay = (a t p) A p < b n po-ob.

i ¢

" . * el .
Thus the preimage of (b)) wnder 5 is (b7 ). This shows




ag

T

F

range-residuated. Clearly ¢ is idempotent and its image is (pl.
To see that ¢ is multiplicative we applv Theorem | (5) to see that

if a Ab exists in P, then

Pla ab) =[G Aab) tplap=(a* p)a(btp)ap

and this shows that ¢(a A b) = ¢(a) A H(b).

The point to all this is contained in

COROLLARY 3.  W(X) 1is an M-semilattice.

84. A Characterization of W(n). For a partially ordered set P, let
us agree to call a,b ¢ P related in case they have a common lower

bound, and call them unrelated otherwise. We then have

Theorem 6. Let L be a poset having a largest element 1, but

no smallest element. Suppose L satisfies the following conditions:

() L. is atomic.
(2) For every atom p of L, [p,1] is isomorphic to the lattice
of all subsets of an n - 1 ¢lement set.

(3) Among the coatoms of L there is a family § of n coatoms

that is maximal with respect to being pairwise unrelated. Call these

coatoms special, and suppose they are such that:
(3a) Corresponding to cach proper subset J of S, there is a

unique coatom ¢(J) that is related to all s - J and unrelated to

every s ¢ 1. Lvery coatom is of this form.

P |




Y‘—v— nand

— 16—

(3b) Aic(Ji) exists iff the family {Ji} are pairwise comparable

as o sets.,

Then L is isomorphic to W(n),

Proof:  There are n special coatoms, so0 thev mav be Labeled

(1), (), (n). Detine 2l > W) by (e ()

i

CI), with
(1) the unict element of W{n). TVTor anv other element = of
by (2), x has a unique representation as  x = Aic(Ji) wvhere there
are at most n - | coatoms v(Ji). By (3b), the Ji's are pairwise
comparable, s0 by property (P6), AiC(Ji) exists in W(n). Deline
(x) = fiC(Ji). By the uniqueness of the representation of  x as the
meet of a family ot coatoms, - is well detined. To sce that it is
onto, note that it D = Ai(C(Ji) exists in W(n), the argument we
just made can be reversed to conclude that Aiv(Ji) exists in 1.
By construction, l‘(/\ic(Jj)) = AiC(Ji)). The proot is couwpleted by
observing that x > v in L is equivalent to the assertion that
the set of coatoms above X be contained in the set above vy, and
this is clearty equivalent to v(x) - 0(v).

Though the above characterization is casy to establish, it is
in manv wavs unsatisfactorv. For one thing, conditions (3a) and
(3b) are extremely powerful: tor another, thev are combinatoerial as
well as being order theoretic. Tt would be interesting to weaken
these conditions, though as we shall soon sce, thev cannot be entirely
clhiminated. [t would also be of interes! to have a characterization
that is more order theoretic.  In that W(n)  is a semiBoolean alycebra
a characterization atone the tines ot [}, Theorem 7,17, po 240

would also he appropriate.

e emma s aA
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Before closing, it is illuminating to consider some eamples,
Each example is of a poset with height 3. Onlv the coatoms will
be shown; a connection between a pair of coatoms will indicate that
I there is an atom beneath them. In that ecach atom will be under
exactly two coatoms, this completely specifies the posct.  Each
example will have a set of 3 special coatoms. These will be indicated
I bv open  circles, with the remaining coatoms denoted by closed circles,
' Fip. 1 is the diagram for OP(3). Referring to the condition of

Theorem 6, the example in Fig. 2 satisfies (1), (2), (3), (3a), but

not (3b); the example in Fig. 3 satisfies all conditions except (3a).

Pl SN
DI

Bins. M

—_—

Fig, 1 0P(3) Fig. Fig, 3

A e o

. - . . \ i P - e



M

(4]

(61

(7]

(81

(9]

[10]

(1]

-18-

REFERENCES

ABBOTT, J. C., Sets lattices and Boolean algebras, Allve and Bacon,
Boston, 1967,

ARROW, K. 1., Social choice and individual valnes, Wilev, New York,
1963, sccond edition.

BARTHFSLENY, J. P., FLAMENT, D., and MONJARDET, L., Ordered sots and

social sciences, in "Ordered Sets", ed. . Rival, Reidel,
Dordecht, 1981, pp. 721-758.

BLYTH, T. S. and JANOWITZ, M. T., Residuation Theorv, Pergamon,
l.ondon, 1972.

ESTABROOK, G. F., JOHNSON, C. S. Jr., and McMORRIS, F. R., An idealized

concept of the true cladistic character, Math. Biosci., 23 (1975),
pp. 263-272.

» A mathematical foundation for the analvsis of cladistic

thra«ter (Q_Edt1b1lltv‘ ibid., 29 (1976), pp. 181-187.

» An algebraic analysis of cladistic characters, Discrete

"Math., 16 (1976), pp. l41- 147.

ESTABROOK, G. ., and McMORRIS, F. R., When arce two qydlztztzve

taxonomic characters compatible? J. Math. Blolug:_v 4 (1977),

ppP- 195-200.

FISHBURN, P. C., The theory of social choice, Princeton, 1973,

» Mathematics of decision theory, Mouton, The Hague, 1972.

McMORRIS, F. R., On the compatibility of binarv qualitative taxonomic

characters, Bull. Math. Biolouy, 39 (1977), pp. 133-138.

MIRKIN, B. G., Group choice, Winston, Washington, 1979.

MONJARDET, B., Axiomatiques et proprictes des quasi-ordres, Math.

Sci. Hum. 16 (1978), pp. 51-82.

o

—

4
S
{
E
~ -~




v

a( D

SECURITY CLASSIFICATION OF THIS PAGE (When Date Fntered!

REPORT DOCUMENTATION 2AGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

J8401

2. GOVY ACCESSION NO.

3 RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitle)

On the Semilattice of Weak Orders

of a Set

S. TYPE OF REPORT & PERIOD COVERED
Technical
Januaryv 1, 1984-March 11,1984

6§ PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

M. F. Janowitz

- CONTRACT QR GRANT NUMBER(s)

NOOO14-79-C-0)629

9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Massachusetts

Amherst, MA 01003

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

12140,

11. CONTROLLING OFFICE NAME AND ADDRESS

Procuring Contract Officer
Office of Naval Research
Arlington, VA 22217

12 REPORT DATE

March, 1984

3. NUMBER OF PAGES
18

Office of Naval Research Resident

Cordon McKay Laboratory, Room 113
Cambridge, MA 02138

4. MONITORING AGENCY NAME & ADORESS(if ditferent from Controlling Olfice)

Representative, Harvard Universitv,

1S. SECURITY CLASS. (of this report)
Unclassitfied

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

APPROVED FOR PUBLIC RELEASE:

DISTRTBUTTON UNLIMITED

17. OISTRIBUTION STATEMENT (of the sbatract entered in Block 20, {f different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceseary and identity by block number)

Partition, semiBoolean, semilattice, preference structure

investigated.

and digital image processing.

20. ABSTRACT (Continue on reveree eside Il necessary and identity by block number)

Nrder theoretic properties of the semilatti v of weak orders on a4 sct are
In the finite case a characterization is provided.
tions are given toe such diverse fields as votingy preference, cladistics,

Anplica-

DD 38", 1473

S/N 0102-014- 6601

EOITION OF | NOV 6515 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)







